Coral nursery research at Penn State

John Parkinson, PhD.

Department of Biology, Penn State University
Earth Talks: Exploring the Oceans
Monday, October 6th, 2014
Coral Reefs Reduce Wave Energy and Height

Coral reefs reduce wave energy by an average of 97 percent across all studies globally. The reef crest, or shallowest part of the reef where the waves break first, dissipates 86 percent of wave energy on its own. The whole reef reduces wave height by 84 percent.

Study Citation: Ferrario, F., M.W. Beck, C.D. Storlazzi, F. Micheli, C.C. Shepard, L. Airoldi. 2014. The Effectiveness of Coral Reefs for Coastal Hazard Risk Reduction and Adaptation. Nature Communications. Doi:10.1038/ncomms4794
© 2014 The Pew Charitable Trusts
Economic Value of Reefs

Sum: ~$30 billion

http://coralreef.noaa.gov/aboutcorals/values/resources/cr_econ_value_cht.jpg
19% of Earth’s coral cover lost

15% projected loss in 10-20 years.

Another 20% projected loss in 20-40 years.

Nursery Benefits

• Asexual Propagation:
 – Increase biomass
 – Preserve extant diversity

• Downstream Sexual Recombination
 – Promote new diversity

Why is diversity important?
Gardner et al. (2002) Nature

Fig. 3. Number of reef provinces bleaching since 1979. (Graph modified from Goreau and Hayes (1994) with data added for 1992 onwards.) Arrows indicate strong El Niño years.

Hoegh-Guldberg et al. (1999) Marine and Freshwater Research

coralreefecosystems.org
Major question in coral biology:
Can corals adapt to climate change?
Diagram showing the process of cell division and recombination in A. palmata genets A and B. The diagram illustrates how fragments can reattach, either keeping the original symbiont or changing it, and the subsequent cell division and recombination processes.
<table>
<thead>
<tr>
<th>Species</th>
<th># MSATs</th>
<th>P_{ID}</th>
</tr>
</thead>
<tbody>
<tr>
<td>Host:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Acropora palmata</td>
<td>5</td>
<td>10^{-9}</td>
</tr>
<tr>
<td>Symbiont:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symbiodinium ‘fitti’ (A3)</td>
<td>13</td>
<td>10^{-8}</td>
</tr>
</tbody>
</table>

Baums *et al.* (2014) *Molecular Ecology*
• Acknowledgements:

Baums & LaJeunesse Labs
(Members Past & Present)

Dissertation Committee

Iliana Baums (advisor)
Todd LaJeunesse (chair)
Jim Marden
Andrew Read
Istvan Albert
Mary Alice Coffroth

• Funding:

Penn State University Graduate Fellowship, NSF GRFP (DGE-0750756), NSF (OCE0825979), NSF (OCE0928764), NOAA (NA08NMF4630462), TNC-NOAA/ARRA, the Clyde and Connie Woodburn Foundation, Columbus Zoo and Aquarium, Dallas Zoo and Children’s Aquarium at Fair Park, the National Aquarium, Washington and Baltimore, Henry Doorly Zoo, Green Foundation, Morris Animal Foundation, Shedd Aquarium, and the Smithsonian’s National Zoological Park.